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WHY ARE WE INTERESTED IN CLOUDS?

e Clouds exert strong radiative influence in shortwave (— 48 W
m-2) and longwave (+ 17 W m-2) global average; much more
locally and instantaneously. Even thin clouds exert strong
radiative effects.

e Need to accurately represent clouds in weather and climate
models.

e Any change in clouds could augment or diminish the climate
impact of increasing greenhouse gases — cloud feedbacks.

e Clouds may be visible manifestation of atmospheric dynamics
and variability.

e Cloud-aerosol interactions and radiative forcing of climate
change.



WHAT IS A CLOUD?

AMS Glossary of Meteorology (2000)

A visible aggregate of minute water droplets and/or ice particles in
the atmosphere above the earth’s surface.

Total cloud cover: Fraction of the sky hidden by all visibl:; clou

Clothiaux, Barker, & Korolev (2005)
Surprisingly, and in spite of the fact that we deal with cl
daily basis, to date there is no universal definition of
Ultimately, the definition of a cloud depends on
sensitivity of the instruments used.

Ramanathan, JGR (ERBE, 1988)
Cloud cover is a loosely defined term.

Potter Stewart (U.S. Supreme Cozzrt"
I shall not today attempt furt
see 1t. ;



CLOUD OPTICAL DEPTH, 7

Vertical integral of scattering coefficient o.

Scattering coefficient o 1s probability of photon being
scattered per unit distance.

For cloud drops (rad

1us r >> wavelength of light),

o=2 mr?n (nis number concentration of cloud drops).

Optical depth 71s commonly used measure of radiative
influence of a cloud.

Thick clouds, 7> 100: Almost all light 1s scattered

upward.

Thin clouds, <1 :

Most light 1s transmitted.



CLOUD RADIATIVE EFFECT

Dependence on shortwave optical depth and cloud-top temperature
24-Hour average CRE, north central Oklahoma, at equinox
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Net CRE depends on optical depth and cloud-top temperature even in sign.



MEASUREMENTS OF GLOBAL CLOUD FRACTION
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* For clouds with optical depth > 0.1 global cloud fraction is about 68%.

* Cloud fraction increases to 73% when including subvisible cirrus with
optical depth down to 0.01 (e.g. CALIPSO) and decreases to about 56%
for clouds with optical depth > 2 (e.g. POLDER).

» Key reasons for differences: resolution and threshold.



CHALLENGES IN CHARACTERIZING CLOUDS
AND REPRESENTING THEM IN MODELS

e Ephemeral. Clouds are tenuous, hard to define, harder to study.
Condensed cloudwater is about 1% of surrounding water vapor.

Cloudwater amount 1s highly dependent on condensation or
evaporation associated with cloud vertical motion.

e Multiple scales. Clouds exhibit structures on many scales, from
thousands of kilometers down to 1 meter.

New methods of characterizing clouds are welcome.



CLOUD PHOTOGRAPHY
FROM SPACE
LOOKING DOWNWARD



EARTH FROM 1.5 MILLION KILOMETERS

DSCOVR satellite at Earth—Sun Lagrange point

July 6, 2015; Credit — NASA
2048 x 2048 pixels; nadir resolution 8 km.



EARTH FROM 1.5 MILLION KILOMETERS

DSCOVR satellite at Earth—Sun Lagrange point

July 6, 2015; Credit — NASA
Focus 1n on a box over the southeastern Pacific.



SOUTHEASTERN PACIFIC AT NATIVE RESOLUTION
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Rich structure in clouds at a variety of scales.




RED IMAGE
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Red image emphasizes clouds (red filter in black and white photography).



RED/(RED + BLUE) IMAGE — RRB

— 200 km
Or—=m -‘ -

100

4w et v - . y
Pixels 0 100 200 300 400 500 600

Red/(Red + Blue) normalizes for intensity and brings out thin clouds.



FALSE COLOR RED/(RED + BLUE) IMAGE
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Red/(Red + Blue) normalizes red radiance and brings out thin clouds.

Pixels with RRB greater than ~ 0.45 are pretty confidently cloud; cloud
fraction, evaluated from integral of PDF, ~32%.

Values of RRB less than ~ 0.35 are pretty confidently cloud free; cloud
fraction ~ 73%.

Cloud fraction ranges from 32% to 73%.
There is no value of RRB that uniquely separates cloud from clear sky.



Z0O0OM IN ON POCKETS OF CLOSED CELLS

Pixels 0 100 200 300 400 500

Organized convective cells contributing to planetary reflectance.




FALSE COLOR RED/(RED + BLUE) IMAGE
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Note organized structure in RRB 1image.
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CLOUD PHOTOGRAPHY
FROM THE SURFACE
LOOKING UPWARD



THE MULTIFRACTAL SCALING OF CLOUD RADIANCES FROM 1M TO 1KM

D. SACHS S. LOVEJOY and D. SCHERTZER
Fractals, Vol. 10, No. 3 (2002) 1-12

e

March 11




HIGH RESOLUTION IMAGER

Fujifilm FinePix S1 - e
14 Megapixels 3456 x 4608 F

3 Color, RGB, 16bit
1200 mm focal length
(35 mm equiv)
1 Pixel = 6 urad (20 urad)
FOV 22 x 29 mrad
(2 x 3 sun diameters)
Programmable
Wi-F1 communication
Weather resistant

$400




1200 mm EQUIVALENT FOCAL LENGTH
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Todd Vorenkamp, B&H Photo, NYC
That's 1.2 meters!



NARROW FIELD OF VIEW

29 x 22 mrad = 3 x 2 sun (or moon) diameters, 29 x 22 m at 1 km




HIGH RESOLUTION




East

OBSERVATION GEOMETRY
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Solar zenith angle and
azimuth, July 15, 2014,
6 amto 6 pm EDT

Upton, Long Island, NY

West

. Sun, angular diameter
0.535" = 9.3 mrad

Camera FOV, 22 x 29 mrad
= 2 X 3 sun diameters

Both drawn 10 times
actual angular dimension



STRENGTHS AND ADVANTAGES

Black background of outer space: No surface effects (to first order).
No side-wall 1ssues; no correction sky cover to ground cover.
Readily available data acquisition hardware and software.

Available, easy-to-use image analysis and processing software.
Lots of data!

WEAKNESSES AND LIMITATIONS

Two-dimensional only.

Daytime only.

Limited wavelength range.

Small fraction of sky; extremely local.

Aerosol masquerades as thin cloud.
Lots of data!



ZENITH RADIANCE AND RED/(RED + BLUE)

Dependence on cloud optical depth and solar zenith angle
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Zenith radiance increases rapidly with 7, peaks, and then decreases.
RRB increases rapidly and then plateaus independent of solar zenith angle.



Lidar over same 1 hr period; superimposed integrated lidar signal
and mean Red/(Red + Blue), RRB, from photos
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Thin, single cloud layer, base ~ 2.6 km.

Note high RRB for cloud; low for clear.

Note high RRB even for very thin cloud, e.g. 442-447.

Could be broken cloud (442) or thin uniform cloud (443-447) more likely.

Note strong effect on RRB despite low optical depth inferred from transmittance.
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SPATIAL AND TEMPORAL VARIABILITY
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239 Successive photos at 15 s intervals over 1 hour,

Note high spatial variability; one image ~57 X 75 m
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SPATIAL AUTOCORRELATION

Broken single cloud, 2.6 km; NYC CCNY 2015-05-22
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e Spatial autocorrelation reasonably symmetric with length ~ 15 m.



SPATIAL AUTOCORRELATION

Dependence on location within single broken cloud
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e Autocorrelation structure is highly variable within image.




GOES VISIBLE CHANNEL, SGP,
2015-0731, 1600 UTC
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Thin broken clouds visible in 1-km resolution GOES image.




SIX MINUTES IN OKLAHOMA, JULY 31,2015

—— 167 M @ 1410 m
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SIX MINUTES IN OKLAHOMA, JULY 31,2015

—30m @ 1410 m
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MULTIPLE MEASURES OF CLOUD

North central Oklahoma, 2015-07-31

—— RIR+B)WFOV  —— R/(R+B JNFOV  — 673/(673+440) zenith
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Lidar gives cloud base height and measure of transmittance.
Integrated lidar return is measure of cloud amount.
R/(R+B) from two zenith pointing cameras: 21 x 29 mrad, 120 x 160 mrad.
673/(673 + 440) from zenith pointing spectral radiometer.

All measures show more or less coherent signals of intermittent clouds.
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COMPARE WFOV AND NFOV IMAGES
Examine subset of WFOV corresponding to NFOV 1mage
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Red/(Red + Blue) false-color images and histogram are virtually identical
for two images, showing robustness of quantity.



STRENGTHS OF RED/(RED + BLUE)
AS MEASURE OF CLOUDINESS

e Continuously variable quantity, as opposed to binary numerator in
evaluating cloud fraction.

e Nearly monotonic in cloud optical depth 7, with plateau at large 7.
e Nearly independent of solar zenith angle, except at low 7.
e Nearly independent of scene brightness.

e Suitable for spatial and temporal averaging as (R)/(R+B).



CONCLUSIONS

e Clouds can be imaged with resolution better than 1 meter by high
resolution photography from the surface.

e Clouds frequently exhibit high spatial variability on scales of
meters to tens of meters.

e Even very thin clouds are readily detected by color and quantified
as Red/(Red + Blue).

 Red/(Red + Blue) varies greatly for thin clouds. In scenes with
variable cloudiness cloud fraction cannot be uniquely defined.

* We are developing tools to model the radiance of such clouds and
infer distributions of cloud optical depth and model cloud radiative
effect.

e We welcome any suggestions for analysis of cloud spatial
properties from photographic images.





